G-quadruplex DNAzyme-based chemiluminescence biosensing strategy for ultrasensitive DNA detection: combination of exonuclease III-assisted signal amplification and carbon nanotubes-assisted background reducing.
نویسندگان
چکیده
Detection of ultralow concentration of specific nucleic acid sequences is important in early diagnosis of gene-related diseases and biodefense application. Herein, we report an amplified chemiluminescence (CL) biosensing platform for ultrasensitive DNA detection. It is based on the exonuclease III-assisted target recycling amplification and catalytic effect of G-quadruplex-hemin DNAzyme to stimulate the generation of CL in the presence of H2O2 and luminol. Moreover, the typical problem of high background induced by excess hemin itself can be effectively addressed through the absorbing of superfluous hemin on the surface of single-walled carbon nanotubes and then removing though centrifugation. Therefore, our proposed biosensing exhibited a high sensitivity toward target DNA with a detection limit of 12 fM, which was about 100-fold lower than that of the DNAzyme-based CL sensor for DNA detection without Exo III-assisted amplification. This sensing platform provides a label-free and cost-effective approach for sensitive detection of DNA.
منابع مشابه
Bis-three-way junction nanostructure and DNA machineries for ultrasensitive and specific detection of BCR/ABL fusion gene by chemiluminescence imaging
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method has been developed for ultrasensitive and specific detection of BCR/ABL fusion gene based on bis-three-way junction (bis-3WJ) nanostructure and cascade DNA machineries. Bis-3WJ probes are designed logically to recognize BCR/ABL fusion gene, which forms the stable bis-3WJ nanostructure for the activation of polymerase/nick...
متن کاملTarget-induced cyclic DNAzyme formation for colorimetric and chemiluminescence imaging assay of protein biomarkers.
A target-induced cyclic strategy for DNAzyme formation was proposed to achieve simple, sensitive and universal detection of protein biomarkers with convenient colorimetric or chemiluminescence imaging readout. In the assay, the target protein was recognized by a pair of DNA-labeled antibodies (Ab1-DNA1 and Ab2-DNA2) to form a proximate complex, which could hybridize with the conjugate DNA3/DNA4...
متن کاملUltrasensitive fluorescence polarization DNA detection by target assisted exonuclease III-catalyzed signal amplification.
Single stranded DNA sequences can be detected by target assisted exonuclease III-catalyzed signal amplification fluorescence polarization (TAECA-FP). The method offers an impressive detection limit of 83 aM within one hour for DNA detection and exhibits high discrimination ability even against a single base mismatch.
متن کاملA Label-Free and Sensitive Fluorescent Qualitative Assay for Bisphenol A Based on Rolling Circle Amplification/Exonuclease III-Combined Cascade Amplification
Bisphenol A (BPA) detection in drinking water and food packaging materials has attracted much attention since the discovery that BPA can interfere with normal physiological processes and cause adverse health effects. Here, we constructed a label-free aptamer fluorescent assay for selective and sensitive detection of BPA based on the rolling circle amplification (RCA)/Exonuclease III (Exo III)-c...
متن کاملMagnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling.
A fluorescence magnetic biosensor for the DNA methyltransferase activity was developed based on the cooperative amplification by combining the magnetic nanoparticles synergistic exonuclease III (Exo III)-assisted circular exponential amplification and a supramolecular structure ZnPPIX/G-quadruplex. First, a duplex DNA probe, which was constructed by the hybridization of a quadruplex-forming oli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 85 23 شماره
صفحات -
تاریخ انتشار 2013